Late Holocene sea-level changes and vertical land movements in New Zealand

Late Holocene sea-level changes and vertical land movements in New Zealand

18-May-20 New Zealand Journal of Geology & Geophysics

Daniel King, Rewi Newnham, Roland Gehrels, et al.

Abstract:

Figure 1 from the study

Figure 1 from the study

Coasts in tectonically active regions face varying threat levels as land subsides or uplifts relative to rising sea levels. We review the processes influencing relative sea-level change in New Zealand, and the geological context behind ongoing land movements, focussing on major population centres. Whilst Holocene sea levels have been reconstructed using a variety of techniques, recent work uses salt-marsh microfossil assemblages to reconstruct relative sea-level changes over the past few centuries. For the twentieth century, these proxy-based studies often show enhanced rates of sea-level rise relative to tide-gauge observations. The effects of tectonic subsidence must be considered, alongside vertical and dating uncertainties in the sea-level reconstructions. Global Positioning Systems (GPS) observations for the past few decades show that vertical land movement (VLM) may be influencing rates of relative sea-level rise. However, the short period of GPS observations, during which trends and rates have varied at some localities, raises questions over the longer-term contribution of VLM to sea-level change over the past few centuries and for future projections. We argue that high-resolution palaeo-sea-level reconstructions from salt-marsh sedimentary sequences can help to answer these questions regarding the interplay between sea-level change and VLM at key locations.

Find the full article here